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1. Introduction

This text is a supplementary material of [8] and presents a brief (and a bit
informal) introduction to the differential geometry of implicit surfaces. Our main
objective is to describe the meaning of curvature in such spaces.

Intuitively, the bending of a surface is described by its curvatures, each one
measuring a specific bending property. For instance, given a point on a surface we
may be interested at the directions where the surface bends more or less. These are
called maximum and minimum curvature directions (see Figure 1). Such directions
at a surface point give us the paths with maximum and minimum bending.

Figure 1. Minimum and maximum directions of the double-torus.

We may also be interested on the numbers indicating the minimum and maxi-
mum amount of bending. These are the maximum and minimum curvatures (see
Figure 2). In this image, blue/red/white codify the positive/negative/null curva-
ture amounts. For instance, in a blue (red) region for the minimum curvature the
surface looks like a “hill” (“valley”) along the minimum curvature direction. The
argument is analogous for the maximum curvature.

Other concepts derive from composing those essential ones, such as the Gaussian
and mean curvatures. They will be explained with more detail along the text. Next
we describe these concepts following the definitions presented in [2, 3, 4, 9, 10].
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Figure 2. Minimum and maximum curvatures of the double-torus.

2. Tubular Neighborhood

This section discusses the bridge between regular surfaces and implicit surfaces
in R3. We first recall one direction of the bridge. Let f : R3 → R be a smooth
function having zero as a regular value, i.e. ∇f 6= 0 in f−1(0) := {p ∈ R3| f(p) = 0}.
The inverse function theorem implies that the zero-level set S = f−1(0) is a regular

surface. In particular, S is oriented since it admits a smooth normal field N = ∇f
|∇f | .

For the other bridge direction, consider S being a compact oriented surface in
R3, then there is an implicit function f : R3 → R having S as its zero-level set. To
find a function f satisfying such properties, we use the tubular neighborhood of S.
The construction of this set depends on the existence of a continuous normal field N
on S, which exists since S is oriented. Then, define a normal line α(t) = p+ tN(p)
passing through each point p ∈ S towards its normal direction N(p). Let Ip be an
open interval, with length 2ε, in the neighborhood of p along the normal line, i.e.
Ip = α(−ε, ε). The union of these intervals

⋃
p∈S Ip is a tubular neighborhood of S

iff for each pair p 6= q ∈ S, we have Ip ∩ Iq = ∅. The existence of ε can be proved,
again, using the inverse function theorem (see Prop. 1 in [3, Section 2.7]).

Figure 3. Slice of a tubular neighborhood. Illustration inspired by [3].

With the tubular neighborhood V of S in hands, we can define the function f
restricted to V . By its construction, each point q ∈ V belongs to a unique interval
Ip passing through a point p ∈ S towards N(p). Thus, define f(q) = t, where t is
the parameter satisfying q = p + tN(p). It can be proved that f is smooth, has
zero as a regular value, and f−1(0) = S (Prop. 2 in [3, Section 2.7]).

Without going into the details, we can extend the domain of f to R3 considering
it to be negative inside S and positive outside S. The remaining of these notes will
be dedicated to the differential geometry of level sets.
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3. The shape operator

Let S be a regular surface given by the zero-level set of an implicit function
f : R3 → R. The differential dNp of the normal field N at p ∈ S is a linear map on
the tangent plane TpS at p. It is called the shape operator of S at p. Let v be a
vector tangent to S at p, we compute the directional derivative of N along v using
∂N
∂v (p) = dNp(v)1. Calculations give us the following shape operator formula [6].

(3.1) dN = (I −NN>)
Hf

|∇f |
.

Where the matrix Hf denotes the Hessian of the function f and I is the 3 × 3
identity matrix. Thus, the shape operator is the product of the Hessian of f scaled
by the gradient norm |∇f | and the orthogonal projection along the normal field N .

The shape operator dNp : TpS → TpS at p ∈ S is symmetric. Indeed, let u
and v be tangent vectors in TpS, using that the symmetric matrix I − NN> is a
linear projection towards the normal direction N and that the Hessian matrix Hf
is symmetric, we obtain the symmetry of the shape operator:

〈v, dN(u)〉 =

〈
v, (I −NN>)

Hf

|∇f |
u

〉
=

〈
(I −NN>)v,

Hf

|∇f |
u

〉
=

〈
v,

Hf

|∇f |
u

〉
=

〈
Hf

|∇f |
v, u

〉
=

〈
Hf

|∇f |
v, (I −NN>)u

〉
=

〈
(I −NN>)

Hf

|∇f |
v, u

〉
= 〈dN(v), u〉 .

Then, the spectral theorem states that there is an orthogonal basis {e1, e2} of
TpS called the principal directions, where the shape operator can be expressed as a
diagonal 2×2 matrix. The two elements of this diagonal are the principal curvatures
k1 and k2. These curvatures are obtained using the equations dN(ei) = −kiei, for
i = 1, 2. We now provide a geometrical interpretation of the shape operator dN .

The second fundamental form of the implicit surface S is a map that assigns to
each point p ∈ S the quadratic form on the tangent space TpS

(3.2) IIp(v) = 〈−dNp(v), v〉 .

Let α be a curve passing through p with unit tangent direction v. The number
kn(p) = IIp(v) is the normal curvature of α at p. We provide a geometrical inter-
pretation of kn(p). Let α be the normal section of S at p along v, i.e. the local
intersection of S and the plane spanned by v and N . In this setting, kn(p) coincides
with the curvature k of α. Indeed, consider α to be parameterized by arc length s
and that α(0) = p and α′(0) = v. Remember that α′′ = kn, where n is the normal
of α, which in this case (normal section) is aligned to N . Then, taking the derivative
of 〈N(s), α′(s)〉 = 0 implies in kn(0) = −〈N ′(0), α′(0)〉 = 〈N(0), α′′(0)〉 = k(0).

Restricted to the unit circle centered in the origin of TpS, IIp reaches a maximum
value and a minimum value, and these coincide with the principal curvatures k1
and k2, respectively. See [3, Section 3.2] for the details.

1The differential dN of N assigns to each point p ∈ S the map dNp : TpS → TpS given by

dNp(v) = ∂N
∂v

(p).
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The principal curvatures measure the maximum and minimum bending of a
surface at each point. For an illustrative example, consider the double-torus surface
given by the zero-level set f−1(0) of the function

(3.3) f(x, y, z) = 2y(y2 − 3x2)(1− z2) + (x2 + y2)2 − (9z2 − 1)(1− z2).

Figure 2(left) shows the surface of the double-torus with a shading indicating its
minimum curvature. Specifically, a transfer function is used to map lower val-
ues of curvature to red, higher values to blue, and intermediary values to white.
Analogously, Figure 2(right) illustrates the maximum curvature function.

Since dN is symmetric, the principal directions associated with the principal
curvatures {e1, e2} form an orthogonal frame at each point. Again, an important
geometrical property is that they are parallel to the directions in which the surface
curves more or less. Figure 1 shows the principal direction of the double-torus.

In the frame {e1, e2}, the second fundamental form IIp can be written in the
standard quadratic form. Specifically, let v = x1e1 + x2e2 be a tangent vector at
a point p ∈ S expressed in the basis {e1, e2}. After simple calculations, we obtain
IIp(v) = x21k1 +x22k2. This classifies the points in S: Elliptic if k1k2 > 0, hyperbolic
if k1k2 < 0, parabolic if only one ki is zero, and planar if k1 = k2 = 0.

Each elliptic point p ∈ S admits a neighborhood that belongs to the same side of
its tangent plane TpS. On the other hand, each neighborhood of a hyperbolic point
has points on both sides of the tangent plane. No such statement can be made for
the parabolic and planar points of S [3, Section 3.3].

4. Gaussian and mean curvatures

The above classification is related to the Gaussian curvature K = k1k2 of S. El-
liptic points have positive Gaussian curvature. In these points, the surface is similar
to a dome. Hyperbolic points have negative Gaussian curvature. At such points,
the surface is saddle-shaped. Parabolic and planar points have null curvature.

Gaussian curvature has relations with Euclidean and Non-Euclidean geometries.
Let S be a complete surface in R3. If S has a constant zero Gaussian curvature,
then it is either a cylinder or a plane (Theorem in [3, Section 5.8]), thus S has the
Euclidean geometry. If S has a constant positive Gaussian curvature it must be
a sphere (Theorem 1 in [3, Section 5.2]) and its geometry is spherical. There is
no complete surface in R3 with a constant negative Gaussian curvature (Theorem
in [3, Section 5.11]), however, allowing S to have a boundary, we can consider the
pseudosphere (see Exercise 6 in [3, Page 171]) which has the hyperbolic geometry.

The mean curvature H = k1+k2

2 , is an extrinsic measure that locally describes

the curvature of the embedded surface S in R3. Note that by its definition, H is
written in terms of the shape operator trace which does not depend on the choice
of basis. Therefore, 2H = trace (dN). To obtain a formula of H in terms of the

derivatives of f we expand the trace of dN = (I −NN>) Hf
|∇f | :

|∇f |3 trace (dN) = fxx(f2y + f2z ) + fyy(f2x + f2z ) + fzz(f2x + f2y )

− 2fxfyfxy − 2fxfzfxz − 2fyfzfyz.
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On the other hand, computing div ∇f
|∇f | and using the above formula of trace (dN),

we obtain 2div ∇f
|∇f | = trace (dN). Thus, the mean curvature of S is expressed as

2H = div ∇f
|∇f | . When f : R3 → R is a signed distance function, the mean curvature

is given by the Laplacian ∆f .
Figure 4(left) illustrates the Gaussian curvature of the double-torus. The blue

color indicates the (elliptic) points with positive Gaussian curvature. The white
color shows the (parabolic and planar) points with zero Gaussian curvature. Finally,
the red color illustrates the (hyperbolic) points with negative Gaussian curvature.
Figure 4(middle) shows the mean curvature of the double-torus. Observe that the
mean curvature highlights more expressive geometrical features of the surface.

Figure 4. Gaussian (left) and mean (middle) curvatures of the
double-torus, and the corresponding Harris function (right).

5. Harris corner detector

The Gaussian and mean curvatures can be used to decompose S into regions
with different geometries, e.g. in elliptic, hyperbolic, parabolic, and planar regions.

In the context of image segmentation, the Harris corner detector [5] decomposes
a given image in the corner, edges, and planar regions. Such decomposition is
reached using the Harris response function of the surface given by the 3D graph of
a gray-scale image.

(5.1) R = k1k2 − τ(k1 + k2)2 = K − 4τH2.

Where ki are the principal curvatures of the graph given by the image function,
and τ is an empirical constant commonly taken in the interval [0.04, 0.06].

The Harris response function R can be easily extended to the implicit surface S
providing a decomposition of S in corner regions (R > 0), edge regions (R < 0) ,
and planar regions(R ≈ 0). Figure 4(right) illustrate the Harris response function
of the double-torus. Blue/red/white colors indicate the corner/edge/planar regions.
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6. Umbilical points

A point p ∈ S is called umbilical if its principal curvatures are equal, i.e. k1 = k2.
Note that planar points are umbilical. There is the interesting fact that a region of S
containing only umbilical points must coincide with a piece of a plane (k1 = k2 = 0)
or a piece of a sphere (k1 = k2 6= 0). Umbilical points are singularities of the
principal directions. Figure 1 gives an illustrative example.

Umbilical points can be connected by some integral lines (separatrices) of the
principal directions. The resulting graph is called the topological graph and decom-
poses the surface in regions containing no umbilical points.

7. Computing the principal curvatures

This section presents the explicit formulas of the curvatures of the surface S
given by the zero-level set of a function f : R3 → R.

Restricted to the tangent plane TpS at p ∈ S, the characteristic polynomial
det[dNp − λI] = 0 of the shape operator can be written as λ2 − 2Hλ + K = 0,

where H = k1+k2

2 is the mean curvature and K = k1k2 is the Gaussian curvature.
Thus the principal curvatures are given by:

(7.1) k1 = H −
√
H2 −K and k2 = H +

√
H2 −K.

As we saw in Section 4, the mean curvature H can be computed using the
divergence of the normal field, i.e. 2H = div ∇f

|∇f | .

The Gaussian curvature K of S can be calculated using the following formula.
We refer to the work of Goldman [4] for its deduction.

(7.2) K = − 1

|∇f |4
det

[
Hf ∇f
∇f> 0

]
.

Therefore, the curvatures of S can be calculated analytically considering only
the coefficients of the gradient and Hessian of f . Now we focus on computing the
principal directions of S.

8. Computing the principal directions

Let v = (vx, vy, vz) be a tangent direction at a point p ∈ S. By definition, v is
a principal direction of S if and only if dN(v) = λv. In other words, dN(v) must
belong to the line spanned by v which is equivalent to 〈v,N ∧ dN(v)〉 = 0. Then,
using the formula of the shape operator dN , given in Equation 3.1, we obtain

(8.1) 〈v,∇f ∧Hf(v)〉 = 0.

Where Hf(v) is the Hessian applied to v, i.e. Hf(v) =
(
〈v,∇fx〉 , 〈v,∇fy〉 , 〈v,∇fz〉

)
with ∇fx = (fxx, fxy, fxz) being the gradient of fx, analogous for ∇fy and ∇fz.
Thus, Equation 8.1 can be written in the determinant form

(8.2) det


vx vy vz

fx fy fz

〈v,∇fx〉 〈v,∇fy〉 〈v,∇fz〉

 = 0.



DIFFERENTIAL GEOMETRY OF IMPLICIT SURFACES 7

Therefore, satisfying Equation 8.2 is a necessary and sufficient condition for v to
be a principal direction of S. To solve Equation 8.2, we express it in a tensor form

(8.3)
[
vx vy vz

]
A B C

B D E

C E F



vx

vy

vz

 = 0.

Where the coefficients of this symmetric matrix can be expressed in terms of the
gradient and Hessian of f [2]:

A = fyfzx − fzfyx, D = fzfxy − fxfzy, F = fxfyz − fyfxz,
B = (fzfxx − fxfzx + fyfzy − fzfyy)/2,

C = (fyfzz − fzfyz + fxfyx − fyfxx)/2,

E = (fxfyy − fyfxy + fzfxz − fxfzz)/2.

To solve Equation 8.3, we use the fact that the gradient of f is perpendicular to
the tangent direction v, i.e. 〈∇f, v〉 = vxfx + vyfy + vzfz = 0. As S is a regular
surface (∇f 6= 0), we can consider, “without loss of generality”, fz 6= 0. This leads
us to vz = (vxfx + vyfy)/fz. Replacing this expression in Equation 8.3 provides
the following quadratic equation in terms of vx and vy

(8.4) Uv2x + 2V vxvy +Wv2y = 0

Where its coefficients are given by

U = Af2z − 2Cfxfz + Ff2x

V = 2(Bf2z − Cfyfz − Efxfz + Ffxfy)

W = Df2z − 2Efyfz + Ff2y

Equation 8.4 can be solved using the Bhaskara formula. If ∆ = V 2 − 4UW 6= 0,
the principal directions are given by

e1 =
(
X1fz, 2Ufz, −X1fx − 2Ufy

)
and e2 =

(
X2fz, 2Ufz, −X2fx − 2Ufy

)
where X1 = −V + sgn(fz)

√
∆ and X2 = −V − sgn(fz)

√
∆ with sgn(fz) being the

sign of the z-coordinate fz of ∇f . There is no solution for Equation 8.4 in the
points of S satisfying ∆ = 0. These points are umbilicals.

We give a brief explanation of the term sgn(fz) in the principal direction for-
mulas. We considered a region of S satisfying fz 6= 0 to parameterize the tangent
planes using the x, y-coordinates. Then, changing the sign of fz induces a change of
orientation on the tangent planes which permutes the principal directions. There-
fore, sgn(fz) is used to maintain the formulas coherent within the considered region.

9. Silhouettes, Valleys, and Ridges

Silhouettes are common objects in non-photorealistic rendering, they highlight
the transitions between the front surface and the back-surface [6]. A point p belongs
to the silhouette regions of the surface S, associated to an observer point q, if it
satisfies | 〈v,N(p)〉 | < ε; v is the view direction of the ray connecting q to p, and
ε > 0 is a threshold radius of the region. Clearly, the silhouettes regions are view
dependent. Figure 5 illustrates the silhouettes of the Armadillo model in black.
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Figure 5. The silhouettes are in black.

The extreme points of the principal curvatures along the principal directions
compose the ridge and ravines of S [1, 7]. These are lines encoding the local
information of how S is bending. Specifically, a point p in S is a ridge (ravine) if
k1 (k2) attains a maximum (minimum) along e1 (e2). In other words, when the
directional derivative of ki along ei vanishes ∂ki

∂ei
= 〈∇ki, ei〉 = 0, then p is a ridge

if i = 1 and ∂2k1

∂e21
< 0 or p is a ravine if i = 2 and ∂2k2

∂e22
> 0. Observe that reversing

the orientation of S, that is, considering the normal field −N instead of N , ridges
and ravines are permuted. Figure 6 illustrates a ridge curve.

Figure 6. The color map illustrates the maximum curvature. The
red line is a ridge. The maximum directions scaled by the corre-
sponding principal curvature are given on the right. Image from [7].
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